由C语言实验报告引申的有趣极限题

关于斐波那契数列相邻项商的正负交替求和的极限

题目描述

斐波那契数列定义如下:

F1=0,F2=1,Fn=Fn1+Fn2(n3)F_1=0,F_2=1,F_n=F_{n-1}+F_{n-2}(n\geqslant 3)

定义数列

an=Fn+2Fn+1a_n=\dfrac{F_{n+2}}{F_{n+1}}

要求考察数列和sns_n在n趋于无穷时的情况:

sn=i=1n(1)n+1ai=i=1n(1)n+1Fn+2Fn+1s_n=\sum_{i=1}^{n}{(-1)^{n+1}a_i}= \sum_{i=1}^{n}{(-1)^{n+1} \dfrac{F_{n+2}}{F_{n+1}}}

例如:

s1=F3F2=21=2s_1=\dfrac{F_{3}}{F_{2}}=\dfrac{2}{1}=2

s2=F3F2F4F3=2132=12s_2=\dfrac{F_{3}}{F_{2}}-\dfrac{F_{4}}{F_{3}}=\dfrac{2}{1}- \dfrac{3}{2}=\dfrac{1}{2}

s3=F3F2F4F3+F5F4=2132+53=116s_3=\dfrac{F_{3}}{F_{2}}-\dfrac{F_{4}}{F_{3}}+\dfrac{F_{5}}{F_{4}}=\dfrac{2}{1}- \dfrac{3}{2}+\dfrac{5}{3}=\dfrac{11}{6}

\cdots

sn=F3F2F4F3+F5F4F6F5++(1)n+1Fn+2Fn+1s_n=\dfrac{F_{3}}{F_{2}}-\dfrac{F_{4}}{F_{3}}+\dfrac{F_{5}}{F_{4}}-\dfrac{F_{6}}{F_{5}}+\cdots+(-1)^{n+1} \dfrac{F_{n+2}}{F_{n+1}}

解答思路

1.由于正负摆动,所以想先将正负相邻两项合并消除摆动

不妨找找规律

a1a2=F3F2F4F3=2132=11×2a_1-a_2=\dfrac{F_{3}}{F_{2}}-\dfrac{F_{4}}{F_{3}}=\dfrac{2}{1} - \dfrac{3}{2}=\dfrac{1}{1\times2}

a3a4=F5F4F6F5=5385=13×5a_3-a_4=\dfrac{F_{5}}{F_{4}}-\dfrac{F_{6}}{F_{5}}=\dfrac{5}{3}- \dfrac{8}{5}=\dfrac{1}{3\times5}

a5a6=F7F6F8F7=1382113=18×13a_5-a_6=\dfrac{F_{7}}{F_{6}}-\dfrac{F_{8}}{F_{7}}=\dfrac{13}{8}- \dfrac{21}{13}=\dfrac{1}{8\times13}

\cdots

不妨猜想:

a2i1a2i=F2i+1F2iF2i+2F2i+1=1F2i×F2i+1a_{2i-1}-a_{2i}=\dfrac{F_{2i+1}}{F_{2i}}-\dfrac{F_{2i+2}}{F_{2i+1}}=\dfrac{1}{F_{2i}\times F_{2i+1}}

也就是要证明:

F2i+1×F2i+1F2i×F2i+2=1F_{2i+1}\times F_{2i+1}-F_{2i}\times F_{2i+2}=1

F2i+1×F2i+1F2i×F2i+2=F2i+1×F2i+1F2i×(F2i+1+F2i)=F2i+1×(F2i+1F2i)F2i×F2i=F2i+1×F2i1F2i×F2i\begin{align*} F_{2i+1}\times F_{2i+1}-F_{2i}\times F_{2i+2} &= F_{2i+1}\times F_{2i+1}-F_{2i}\times (F_{2i+1}+F_{2i}) \\ &= F_{2i+1}\times (F_{2i+1}-F_{2i})- F_{2i}\times F_{2i} \\ &= F_{2i+1}\times F_{2i-1}-F_{2i}\times F_{2i} \end{align*}

F2i+1×F2i+1F2i×F2i+2=F2i+1×F2i1F2i×F2iF_{2i+1}\times F_{2i+1}-F_{2i}\times F_{2i+2}=F_{2i+1}\times F_{2i-1}-F_{2i}\times F_{2i}

从而有

F2i+1×F2i+1F2i×F2i+2=F2i1×F2i1F2i2×F2iF_{2i+1}\times F_{2i+1}-F_{2i}\times F_{2i+2}=F_{2i-1}\times F_{2i-1}-F_{2i-2}\times F_{2i}

从而有

F2i+1×F2i+1F2i×F2i+2=F3×F3F2×F4=2×21×3=1F_{2i+1}\times F_{2i+1}-F_{2i}\times F_{2i+2}=F_{3}\times F_{3}-F_{2}\times F_{4}=2\times 2-1\times 3=1

因此猜想成立,所以

s2n1=i=1n1F2i×F2i+1s_{2n-1}= \sum_{i=1}^{n}{\dfrac{1}{F_{2i}\times F_{2i+1}}}

2.写出通项公式

因此,s2n1s_{2n-1}的通项公式为:

s2n1=i=1n1F2i×F2i+1=1F2×F3+1F4×F5+1F6×F7++1F2n×F2n+1s_{2n-1}= \sum_{i=1}^{n}{\dfrac{1}{F_{2i}\times F_{2i+1}}}=\dfrac{1}{F_2\times F_3}+\dfrac{1}{F_4\times F_5}+\dfrac{1}{F_6\times F_7}+\cdots+\dfrac{1}{F_{2n}\times F_{2n+1}}

s2n=s2n1F2n+2F2n+1=i=1n1F2i×F2i+1F2n+3F2n+2s_{2n}= s_{2n-1}-\dfrac{F_{2n+2}}{F_{2n+1}}= \sum_{i=1}^{n}{\dfrac{1}{F_{2i}\times F_{2i+1}}}-\dfrac{F_{2n+3}}{F_{2n+2}}

现在我们已经消除了正负号,现在我们只需证明s2n1s_{2n-1}的当n趋于无穷时收敛于一个定值a,即:

limns2n1=limn1F2×F3+1F4×F5+1F6×F7++1F2n×F2n+1=a\lim_{n\to\infty}{s_{2n-1}}=\lim_{n\to\infty}{\dfrac{1}{F_2\times F_3}+\dfrac{1}{F_4\times F_5}+\dfrac{1}{F_6\times F_7}+\cdots+\dfrac{1}{F_{2n}\times F_{2n+1}}}=a

而此时自然的,由于斐波那契数列相邻两项商的极限为φ=1+521.618034\varphi=\dfrac{1+\sqrt{5}}{2}\approx1.618034,因此

limns2n=limns2n1limnF2n+3F2n+2=limns2n1φ=aφ\lim_{n\to\infty}{s_{2n}}=\lim_{n\to\infty}{s_{2n-1}}-\lim_{n\to\infty}{\dfrac{F_{2n+3}}{F_{2n+2}}}=\lim_{n\to\infty}{s_{2n-1}}-\varphi=a-\varphi

而结合编程已经计算出极限的近似值:
奇数项和s2n12.19596s_{2n-1}\approx2.19596
偶数项和s2n0.577922s_{2n}\approx0.577922
验证:

2.195961.6180340.5779222.19596-1.618034\approx0.577922

十分符合刚刚的论述!

3.证明

下面利用
由Binet公式:

Fn=φnψn5F_n=\dfrac{\varphi^n-\psi^n}{\sqrt{5}}

其中 φ=1+52\varphi=\dfrac{1+\sqrt{5}}{2},
ψ=152\psi=\dfrac{1-\sqrt{5}}{2}
又:φ>1>0>ψ>1\varphi>1>0>\psi>-1
因此当n趋于无穷时ψn\psi^n趋于0,而φn\varphi^n趋于无穷
因此

limnFn=limnφnψn5=limnφn5\lim_{n\to\infty}{F_n}=\lim_{n\to\infty}{\dfrac{\varphi^n-\psi^n}{\sqrt{5}}}=\lim_{n\to\infty}{\dfrac{\varphi^n}{\sqrt{5}}}

因此

limn1F2i×F2i+1=limn5φ2i×5φ2i+1=limn5φ4i+1\lim_{n\to\infty}{\dfrac{1}{F_{2i}\times F_{2i+1}}}=\lim_{n\to\infty}{\dfrac{\sqrt{5}}{\varphi^{2i}}\times\dfrac{\sqrt{5}}{\varphi^{2i+1}}}=\lim_{n\to\infty}{\dfrac{5}{\varphi^{4i+1}}}

因此:存在N,当n>N时,使得:

limns2n1=limn1F2×F3+1F4×F5+1F6×F7++1F2n×F2n+1=limni=1n5φ4i+1\begin{align*} \lim_{n\to\infty}{s_{2n-1}}&=\lim_{n\to\infty}{\dfrac{1}{F_2\times F_3}+\dfrac{1}{F_4\times F_5}+\dfrac{1}{F_6\times F_7}+\cdots+\dfrac{1}{F_{2n}\times F_{2n+1}}} \\ &=\lim_{n\to\infty}{\sum_{i=1}^{n}{\dfrac{5}{\varphi^{4i+1}}}} \\ \end{align*}

因为其首项为5φ5>0\dfrac{5}{\varphi^5}>0,公比为0<1φ4<10<\dfrac{1}{\varphi^4}<1,求和收敛性显然成立。
又N为有限数,而当n>N时,limni=1n5φ4i+1\lim_{n\to\infty}{\sum_{i=1}^{n}{\dfrac{5}{\varphi^{4i+1}}}}收敛
因此limns2n1 \lim_{n\to\infty}{s_{2n-1}} 收敛


由C语言实验报告引申的有趣极限题
https://hicancan.cn/2024/11/07/math01/
作者
hicancan
发布于
2024年11月7日
更新于
2024年11月11日
许可协议